Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 712: 135214, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31836221

RESUMO

Chemical characterisation of atmospheric aerosols over Arabian Sea (AS) and Indian Ocean (IO) have been carried out during the winter period (January to February 2018) as part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB-2018). Mass concentrations of organic carbon (OC), elemental carbon (EC), water soluble and insoluble OC (WSOC, WIOC), primary and secondary OC (POC, SOC), water-soluble inorganic ions and trace metals have been estimated with a view to identify and quantify the major anthropogenic pollutants affecting the oceanic environments. Aerosol mass loading was found to exhibit strong spatial heterogeneity (varying from 13 to 84 µg m-3), significantly modulated by the origin of air-mass trajectories. Chemical analysis of aerosols revealed the presence of an intense pollution plume over south-eastern coastal Arabian Sea, near to south-west Indian peninsula (extending from ~ 12°N to 0° at 75°E) with a strong latitudinal gradient (~3 µg m-3/deg. from north to south) dominated by anthropogenic species contributing as high as 73% (38% nss-SO42-, 24.2% carbonaceous aerosols (21% Organic Matter, 3.2% EC) and 10% NH4+). Anthropogenic signature over oceanic environment was also evident from the dominance and high enrichment of elements like Zn, Cu, Mn and Pb in trace metals. Long-range transport of air-masses originating from Indo Gangetic Plains and its outflow regions in Bay of Bengal, has been seen over Arabian Sea during winter, that imparted such strong anthropogenic signatures over this oceanic environment. Comparison with previous cruise studies conducted nearly two decades ago shows a more than two-fold increase in the concentration of nss-SO42-, over the continental outflow region in Arabian Sea.

2.
Sci Total Environ ; 656: 1261-1279, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625656

RESUMO

Near-surface atmospheric aerosols (PM10) collected from a tropical coastal location in south-west peninsular Indian region for a duration of 6 years (2012-18) (N = 461) were analysed for carbonaceous aerosol components, the less studied aerosol species. Organic carbon (OC), its water soluble-insoluble (WSOC and WIOC) components, primary-secondary (POC and SOC) fractions and elemental carbon (EC) were examined for understanding the annual, seasonal, day-night variations in abundance pattern along with associated physical and meteorological processes. Total carbonaceous aerosols accounting for 36% of the collected aerosol mass with 31.5% organic matter (OM) and 4.5% EC respectively, exhibited consistent seasonal pattern throughout the study period with high concentration during winter followed by post-monsoon, pre-monsoon and monsoon. Delineation of marine and continental components of carbonaceous species based on their relative dominance during different air-mass periods, shows that while marine aerosols were a combination of natural sources comprising of volatile, semi-volatile species and secondary organics (from marine VOC precursors); the continental aerosols were composed of anthropogenic combustion sources (fossil fuel, biomass emissions etc). Based on the measurements of OC and EC during 2005-09 and 2012-18, their long term trends (for more than a decade) were investigated. Although OC showed an increasing tendency, EC exhibited a decrease with the total carbonaceous aerosols exhibiting a gradual decreasing trend over the years, indicating that they do not strictly reverberate the reported increasing trend observed over north-central parts of India. This can be presumed to be due to the reduced anthropogenic inputs over the location owing to the control measures and policies. The strong convective activity and large scale monsoon phenomena also helps in the effective dispersion of pollutants. Making use of comprehensive measurement of carbonaceous aerosols and the previous measurements of other aerosol components, an improved chemical composition model is presented.

3.
Sci Total Environ ; 631-632: 1472-1485, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727971

RESUMO

In view of the large uncertainties in the methane (CH4) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH4, column averaged and upper tropospheric CH4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH4 mixing ratio.

4.
Environ Sci Pollut Res Int ; 25(15): 14827-14843, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29541985

RESUMO

This paper presents the first observational results from an Indian station on the long-term changes in surface ozone (O3)-a major environmental pollutant and green house gas-over a period of about 40 years. It is based on the in situ measurements carried out during 1973-1975, 1983-1985, 1997-1998 and 2004-2014 at the tropical coastal station, Thiruvananthapuram. From 1973 to 1997, surface O3 shows a slow increase of ~ 0.1 ppb year-1 and a faster increase of 0.4 ppb year-1 afterwards till 2009 after which it showed a levelling off till 2012 followed by a minor decrease. The highest rate of increase is observed during 2005 to 2009 (2 ppb year-1), and the overall increase from 1973 to 2012 is ~ 10 ppb. The increase in day time O3 (peak O3) is estimated as 0.42 ppb year-1 during 1997-2012 and 2.93 ppb year-1 during 2006-2012. Interestingly, the long-term trend in O3 showed seasonal dependence which is more pronounced during O3 peaking seasons (winter/summer). The observed trends were analysed in the light of the changes in NO2, a major outcome of anthropogenic activities and methane which has both natural and anthropogenic sources and also meteorological parameters. Surface O3 and NO x exhibited positive association, but with varying rate of increase of O3 for NO x < 4 and > 4 ppb. Methane, a precursor of O3 also showed increase in tune with O3. Unlike many other high-latitude locations, meteorology plays a significant role in the long-term trends in O3 at this tropical site with water vapour abundance and strong solar irradiance which favour photochemistry. A comparison with the corresponding changes in the satellite-retrieved tropospheric column O3 (TCO) also showed an increase of 0.03 DU year-1 during 1996-2005 which enhanced to 0.12 DU year-1 after 2005. Both surface O3 and satellite-retrieved TCO were positively correlated with daily maximum temperature, increasing at the rate of 1.54 ppb °C-1 and 1.9 DU °C-1, respectively, on yearly basis. Surface O3 is found to be negatively correlated with water vapour content (ρv) at this tropical site, but at higher levels of ρv, O3 shows a positive trend.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Tempo (Meteorologia) , Monitoramento Ambiental/métodos , Índia , Ozônio/química , Estações do Ano , Temperatura , Clima Tropical
5.
Environ Sci Pollut Res Int ; 22(19): 14901-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25994269

RESUMO

As part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) conducted under the Geosphere Biosphere Programme of Indian Space Research Organisation, ship-based aerosol sampling was carried out over the marine environment of Bay of Bengal (BoB) during the northern winter months of December 2008 to January 2009. About 101 aerosol samples were collected, covering the region from 3.4° to 21° N latitude and 76° to 98° E longitude-the largest area covered-including the south east (SE) BoB for the first time. These samples were subjected to gravimetric and chemical analysis and the total aerosol loading as well the mass concentration of the ionic species namely F(-), Cl(-), Br(-), NO2 (-), NO3 (-), PO4 (2-), SO4 (2-), NH4 (+), etc. and the metallic species, Na, Mg, Ca, K, Al, Fe, Mn, Zn, and Pb were estimated for each sample. Based on the spatial distribution of individual chemical species, the air flow pattern, and airmass back trajectory analysis, the source characteristics of aerosols for different regions of BoB were identified. Significant level of continental pollution was noticed over BoB during winter. While transport of pollution from Indo-Gangetic Plain (IGP) contributed to aerosols over north BoB, those over SE BoB were influenced by SE Asia. A quantitative study on the wind-induced production of sea salt aerosols and a case study on the species dependent effect of rainfall are also presented in this paper.


Assuntos
Poluentes Atmosféricos/análise , Metais Pesados/análise , Aerossóis , Baías , Monitoramento Ambiental , Índia , Chuva , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...